Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 142 tok/s
Gemini 2.5 Pro 51 tok/s Pro
GPT-5 Medium 28 tok/s Pro
GPT-5 High 25 tok/s Pro
GPT-4o 59 tok/s Pro
Kimi K2 198 tok/s Pro
GPT OSS 120B 430 tok/s Pro
Claude Sonnet 4.5 36 tok/s Pro
2000 character limit reached

A new approach for trading based on Long Short Term Memory technique (2001.03333v1)

Published 10 Jan 2020 in q-fin.ST and cs.LG

Abstract: The stock market prediction has always been crucial for stakeholders, traders and investors. We developed an ensemble Long Short Term Memory (LSTM) model that includes two-time frequencies (annual and daily parameters) in order to predict the next-day Closing price (one step ahead). Based on a four-step approach, this methodology is a serial combination of two LSTM algorithms. The empirical experiment is applied to 417 NY stock exchange companies. Based on Open High Low Close metrics and other financial ratios, this approach proves that the stock market prediction can be improved.

Citations (2)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.