Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 145 tok/s
Gemini 2.5 Pro 40 tok/s Pro
GPT-5 Medium 22 tok/s Pro
GPT-5 High 23 tok/s Pro
GPT-4o 107 tok/s Pro
Kimi K2 195 tok/s Pro
GPT OSS 120B 446 tok/s Pro
Claude Sonnet 4.5 36 tok/s Pro
2000 character limit reached

Open Domain Question Answering Using Web Tables (2001.03272v1)

Published 10 Jan 2020 in cs.IR and cs.LG

Abstract: Tables extracted from web documents can be used to directly answer many web search queries. Previous works on question answering (QA) using web tables have focused on factoid queries, i.e., those answerable with a short string like person name or a number. However, many queries answerable using tables are non-factoid in nature. In this paper, we develop an open-domain QA approach using web tables that works for both factoid and non-factoid queries. Our key insight is to combine deep neural network-based semantic similarity between the query and the table with features that quantify the dominance of the table in the document as well as the quality of the information in the table. Our experiments on real-life web search queries show that our approach significantly outperforms state-of-the-art baseline approaches. Our solution is used in production in a major commercial web search engine and serves direct answers for tens of millions of real user queries per month.

Citations (7)

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.