Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 47 tok/s
Gemini 2.5 Pro 44 tok/s Pro
GPT-5 Medium 13 tok/s Pro
GPT-5 High 12 tok/s Pro
GPT-4o 64 tok/s Pro
Kimi K2 160 tok/s Pro
GPT OSS 120B 452 tok/s Pro
Claude Sonnet 4 36 tok/s Pro
2000 character limit reached

Age-Partitioned Bloom Filters (2001.03147v1)

Published 9 Jan 2020 in cs.DS, cs.DB, and cs.DC

Abstract: Bloom filters (BF) are widely used for approximate membership queries over a set of elements. BF variants allow removals, sets of unbounded size or querying a sliding window over an unbounded stream. However, for this last case the best current approaches are dictionary based (e.g., based on Cuckoo Filters or TinyTable), and it may seem that BF-based approaches will never be competitive to dictionary-based ones. In this paper we present Age-Partitioned Bloom Filters, a BF-based approach for duplicate detection in sliding windows that not only is competitive in time-complexity, but has better space usage than current dictionary-based approaches (e.g., SWAMP), at the cost of some moderate slack. APBFs retain the BF simplicity, unlike dictionary-based approaches, important for hardware-based implementations, and can integrate known improvements such as double hashing or blocking. We present an Age-Partitioned Blocked Bloom Filter variant which can operate with 2-3 cache-line accesses per insertion and around 2-4 per query, even for high accuracy filters.

Citations (4)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com