Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
158 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Digit-by-digit and component-by-component constructions of lattice rules for periodic functions with unknown smoothness (2001.02978v1)

Published 9 Jan 2020 in math.NA and cs.NA

Abstract: Lattice rules are among the most prominently studied quasi-Monte Carlo methods to approximate multivariate integrals. A rank-1 lattice rule to approximate an $s$-dimensional integral is fully specified by its generating vector $\mathbf{z} \in \mathbb{Z}s$ and its number of points $N$. While there are many results on the existence of "good" rank-1 lattice rules, there are no explicit constructions for good generating vectors for dimensions $s \ge 3$. This is why one usually resorts to computer search algorithms. Motivated by earlier work of Korobov from 1963 and 1982, we present two variants of search algorithms for good lattice rules and show that the resulting rules exhibit a convergence rate in weighted function spaces that can be arbitrarily close to the optimal rate. Moreover, contrary to most other algorithms, we do not need to know the smoothness of our integrands in advance, the generating vector will still recover the convergence rate associated with the smoothness of the particular integrand, and, under appropriate conditions on the weights, the error bounds can be stated without dependence on $s$. The search algorithms presented in this paper are two variants of the well-known component-by-component (CBC) construction, one of which is combined with a digit-by-digit (DBD) construction. We present numerical results for both algorithms using fast construction algorithms in the case of product weights. They confirm our theoretical findings.

Citations (15)

Summary

We haven't generated a summary for this paper yet.