Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 170 tok/s
Gemini 2.5 Pro 47 tok/s Pro
GPT-5 Medium 35 tok/s Pro
GPT-5 High 26 tok/s Pro
GPT-4o 115 tok/s Pro
Kimi K2 182 tok/s Pro
GPT OSS 120B 446 tok/s Pro
Claude Sonnet 4.5 35 tok/s Pro
2000 character limit reached

Least squares binary quantization of neural networks (2001.02786v3)

Published 9 Jan 2020 in cs.LG and cs.NE

Abstract: Quantizing weights and activations of deep neural networks results in significant improvement in inference efficiency at the cost of lower accuracy. A source of the accuracy gap between full precision and quantized models is the quantization error. In this work, we focus on the binary quantization, in which values are mapped to -1 and 1. We provide a unified framework to analyze different scaling strategies. Inspired by the pareto-optimality of 2-bits versus 1-bit quantization, we introduce a novel 2-bits quantization with provably least squares error. Our quantization algorithms can be implemented efficiently on the hardware using bitwise operations. We present proofs to show that our proposed methods are optimal, and also provide empirical error analysis. We conduct experiments on the ImageNet dataset and show a reduced accuracy gap when using the proposed least squares quantization algorithms.

Citations (30)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.