Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
GPT-5.1
GPT-5.1 73 tok/s
Gemini 3.0 Pro 52 tok/s
Gemini 2.5 Flash 155 tok/s Pro
Kimi K2 202 tok/s Pro
Claude Sonnet 4.5 35 tok/s Pro
2000 character limit reached

The importance of phase in complex compressive sensing (2001.02529v2)

Published 8 Jan 2020 in cs.IT and math.IT

Abstract: We consider the question of estimating a real low-complexity signal (such as a sparse vector or a low-rank matrix) from the phase of complex random measurements. We show that in this "phase-only compressive sensing" (PO-CS) scenario, we can perfectly recover such a signal with high probability and up to global unknown amplitude if the sensing matrix is a complex Gaussian random matrix and if the number of measurements is large compared to the complexity level of the signal space. Our approach proceeds by recasting the (non-linear) PO-CS scheme as a linear compressive sensing model built from a signal normalization constraint, and a phase-consistency constraint imposing any signal estimate to match the observed phases in the measurement domain. Practically, stable and robust signal direction estimation is achieved from any "instance optimal" algorithm of the compressive sensing literature (such as basis pursuit denoising). This is ensured by proving that the matrix associated with this equivalent linear model satisfies with high probability the restricted isometry property under the above condition on the number of measurements. We finally observe experimentally that robust signal direction recovery is reached at about twice the number of measurements needed for signal recovery in compressive sensing.

Citations (11)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.