Papers
Topics
Authors
Recent
2000 character limit reached

Dynamic Task Weighting Methods for Multi-task Networks in Autonomous Driving Systems (2001.02223v2)

Published 7 Jan 2020 in cs.CV, cs.LG, and cs.RO

Abstract: Deep multi-task networks are of particular interest for autonomous driving systems. They can potentially strike an excellent trade-off between predictive performance, hardware constraints and efficient use of information from multiple types of annotations and modalities. However, training such models is non-trivial and requires balancing learning over all tasks as their respective losses display different scales, ranges and dynamics across training. Multiple task weighting methods that adjust the losses in an adaptive way have been proposed recently on different datasets and combinations of tasks, making it difficult to compare them. In this work, we review and systematically evaluate nine task weighting strategies on common grounds on three automotive datasets (KITTI, Cityscapes and WoodScape). We then propose a novel method combining evolutionary meta-learning and task-based selective backpropagation, for computing task weights leading to reliable network training. Our method outperforms state-of-the-art methods by a significant margin on a two-task application.

Citations (49)

Summary

We haven't generated a summary for this paper yet.

Whiteboard

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.