Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 147 tok/s
Gemini 2.5 Pro 50 tok/s Pro
GPT-5 Medium 25 tok/s Pro
GPT-5 High 20 tok/s Pro
GPT-4o 90 tok/s Pro
Kimi K2 192 tok/s Pro
GPT OSS 120B 424 tok/s Pro
Claude Sonnet 4.5 39 tok/s Pro
2000 character limit reached

Missing-Class-Robust Domain Adaptation by Unilateral Alignment for Fault Diagnosis (2001.02015v1)

Published 7 Jan 2020 in eess.SP, cs.LG, and eess.IV

Abstract: Domain adaptation aims at improving model performance by leveraging the learned knowledge in the source domain and transferring it to the target domain. Recently, domain adversarial methods have been particularly successful in alleviating the distribution shift between the source and the target domains. However, these methods assume an identical label space between the two domains. This assumption imposes a significant limitation for real applications since the target training set may not contain the complete set of classes. We demonstrate in this paper that the performance of domain adversarial methods can be vulnerable to an incomplete target label space during training. To overcome this issue, we propose a two-stage unilateral alignment approach. The proposed methodology makes use of the inter-class relationships of the source domain and aligns unilaterally the target to the source domain. The benefits of the proposed methodology are first evaluated on the MNIST$\rightarrow$MNIST-M adaptation task. The proposed methodology is also evaluated on a fault diagnosis task, where the problem of missing fault types in the target training dataset is common in practice. Both experiments demonstrate the effectiveness of the proposed methodology.

Citations (54)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.