Papers
Topics
Authors
Recent
2000 character limit reached

WAF-A-MoLE: Evading Web Application Firewalls through Adversarial Machine Learning (2001.01952v1)

Published 7 Jan 2020 in cs.CR

Abstract: Web Application Firewalls are widely used in production environments to mitigate security threats like SQL injections. Many industrial products rely on signature-based techniques, but machine learning approaches are becoming more and more popular. The main goal of an adversary is to craft semantically malicious payloads to bypass the syntactic analysis performed by a WAF. In this paper, we present WAF-A-MoLE, a tool that models the presence of an adversary. This tool leverages on a set of mutation operators that alter the syntax of a payload without affecting the original semantics. We evaluate the performance of the tool against existing WAFs, that we trained using our publicly available SQL query dataset. We show that WAF-A-MoLE bypasses all the considered machine learning based WAFs.

Citations (26)

Summary

We haven't generated a summary for this paper yet.

Slide Deck Streamline Icon: https://streamlinehq.com

Whiteboard

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Youtube Logo Streamline Icon: https://streamlinehq.com