Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 56 tok/s
Gemini 2.5 Pro 39 tok/s Pro
GPT-5 Medium 15 tok/s Pro
GPT-5 High 16 tok/s Pro
GPT-4o 99 tok/s Pro
Kimi K2 155 tok/s Pro
GPT OSS 120B 476 tok/s Pro
Claude Sonnet 4 38 tok/s Pro
2000 character limit reached

Automated Pavement Crack Segmentation Using U-Net-based Convolutional Neural Network (2001.01912v4)

Published 7 Jan 2020 in cs.CV

Abstract: Automated pavement crack image segmentation is challenging because of inherent irregular patterns, lighting conditions, and noise in images. Conventional approaches require a substantial amount of feature engineering to differentiate crack regions from non-affected regions. In this paper, we propose a deep learning technique based on a convolutional neural network to perform segmentation tasks on pavement crack images. Our approach requires minimal feature engineering compared to other machine learning techniques. We propose a U-Net-based network architecture in which we replace the encoder with a pretrained ResNet-34 neural network. We use a "one-cycle" training schedule based on cyclical learning rates to speed up the convergence. Our method achieves an F1 score of 96% on the CFD dataset and 73% on the Crack500 dataset, outperforming other algorithms tested on these datasets. We perform ablation studies on various techniques that helped us get marginal performance boosts, i.e., the addition of spatial and channel squeeze and excitation (SCSE) modules, training with gradually increasing image sizes, and training various neural network layers with different learning rates.

Citations (8)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.