Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 134 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 33 tok/s Pro
GPT-5 High 31 tok/s Pro
GPT-4o 108 tok/s Pro
Kimi K2 202 tok/s Pro
GPT OSS 120B 429 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

Federated Learning for Localization: A Privacy-Preserving Crowdsourcing Method (2001.01911v2)

Published 7 Jan 2020 in cs.NI and cs.LG

Abstract: Received Signal Strength (RSS) fingerprint-based localization has attracted a lot of research effort and cultivated many commercial applications of location-based services due to its low cost and ease of implementation. Many studies are exploring the use of deep learning (DL) algorithms for localization. DL's ability to extract features and to classify autonomously makes it an attractive solution for fingerprint-based localization. These solutions require frequent retraining of DL models with vast amounts of measurements. Although crowdsourcing is an excellent way to gather immense amounts of data, it jeopardizes the privacy of participants, as it requires to collect labeled data at a centralized server. Recently, federated learning has emerged as a practical concept in solving the privacy preservation issue of crowdsourcing participants by performing model training at the edge devices in a decentralized manner; the participants do not expose their data anymore to a centralized server. This paper presents a novel method utilizing federated learning to improve the accuracy of RSS fingerprint-based localization while preserving the privacy of the crowdsourcing participants. Employing federated learning allows ensuring \emph{preserving the privacy of user data} while enabling an adequate localization performance with experimental data captured in real-world settings. The proposed method improved localization accuracy by 1.8 meters when used as a booster for centralized learning and achieved satisfactory localization accuracy when used standalone.

Citations (24)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.