Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 65 tok/s
Gemini 2.5 Pro 47 tok/s Pro
GPT-5 Medium 39 tok/s Pro
GPT-5 High 32 tok/s Pro
GPT-4o 97 tok/s Pro
Kimi K2 164 tok/s Pro
GPT OSS 120B 466 tok/s Pro
Claude Sonnet 4 38 tok/s Pro
2000 character limit reached

RECAST: Interactive Auditing of Automatic Toxicity Detection Models (2001.01819v2)

Published 7 Jan 2020 in cs.CL, cs.CY, and cs.LG

Abstract: As toxic language becomes nearly pervasive online, there has been increasing interest in leveraging the advancements in NLP, from very large transformer models to automatically detecting and removing toxic comments. Despite the fairness concerns, lack of adversarial robustness, and limited prediction explainability for deep learning systems, there is currently little work for auditing these systems and understanding how they work for both developers and users. We present our ongoing work, RECAST, an interactive tool for examining toxicity detection models by visualizing explanations for predictions and providing alternative wordings for detected toxic speech.

Citations (6)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.