Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 60 tok/s
Gemini 2.5 Pro 51 tok/s Pro
GPT-5 Medium 18 tok/s Pro
GPT-5 High 14 tok/s Pro
GPT-4o 77 tok/s Pro
Kimi K2 159 tok/s Pro
GPT OSS 120B 456 tok/s Pro
Claude Sonnet 4 38 tok/s Pro
2000 character limit reached

Exploring Benefits of Transfer Learning in Neural Machine Translation (2001.01622v1)

Published 6 Jan 2020 in cs.CL and cs.NE

Abstract: Neural machine translation is known to require large numbers of parallel training sentences, which generally prevent it from excelling on low-resource language pairs. This thesis explores the use of cross-lingual transfer learning on neural networks as a way of solving the problem with the lack of resources. We propose several transfer learning approaches to reuse a model pretrained on a high-resource language pair. We pay particular attention to the simplicity of the techniques. We study two scenarios: (a) when we reuse the high-resource model without any prior modifications to its training process and (b) when we can prepare the first-stage high-resource model for transfer learning in advance. For the former scenario, we present a proof-of-concept method by reusing a model trained by other researchers. In the latter scenario, we present a method which reaches even larger improvements in translation performance. Apart from proposed techniques, we focus on an in-depth analysis of transfer learning techniques and try to shed some light on transfer learning improvements. We show how our techniques address specific problems of low-resource languages and are suitable even in high-resource transfer learning. We evaluate the potential drawbacks and behavior by studying transfer learning in various situations, for example, under artificially damaged training corpora, or with fixed various model parts.

Citations (17)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (1)