Towards Automatic Threat Detection: A Survey of Advances of Deep Learning within X-ray Security Imaging (2001.01293v2)
Abstract: X-ray security screening is widely used to maintain aviation/transport security, and its significance poses a particular interest in automated screening systems. This paper aims to review computerised X-ray security imaging algorithms by taxonomising the field into conventional machine learning and contemporary deep learning applications. The first part briefly discusses the classical machine learning approaches utilised within X-ray security imaging, while the latter part thoroughly investigates the use of modern deep learning algorithms. The proposed taxonomy sub-categorises the use of deep learning approaches into supervised, semi-supervised and unsupervised learning, with a particular focus on object classification, detection, segmentation and anomaly detection tasks. The paper further explores well-established X-ray datasets and provides a performance benchmark. Based on the current and future trends in deep learning, the paper finally presents a discussion and future directions for X-ray security imagery.
Collections
Sign up for free to add this paper to one or more collections.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.