Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
GPT-5.1
GPT-5.1 108 tok/s
Gemini 3.0 Pro 55 tok/s Pro
Gemini 2.5 Flash 145 tok/s Pro
Kimi K2 205 tok/s Pro
Claude Sonnet 4.5 36 tok/s Pro
2000 character limit reached

Computationally Efficient NER Taggers with Combined Embeddings and Constrained Decoding (2001.01167v2)

Published 5 Jan 2020 in cs.CL

Abstract: Current State-of-the-Art models in Named Entity Recognition (NER) are neural models with a Conditional Random Field (CRF) as the final network layer, and pre-trained "contextual embeddings". The CRF layer is used to facilitate global coherence between labels, and the contextual embeddings provide a better representation of words in context. However, both of these improvements come at a high computational cost. In this work, we explore two simple techniques that substantially improve NER performance over a strong baseline with negligible cost. First, we use multiple pre-trained embeddings as word representations via concatenation. Second, we constrain the tagger, trained using a cross-entropy loss, during decoding to eliminate illegal transitions. While training a tagger on CoNLL 2003 we find a $786$\% speed-up over a contextual embeddings-based tagger without sacrificing strong performance. We also show that the concatenation technique works across multiple tasks and datasets. We analyze aspects of similarity and coverage between pre-trained embeddings and the dynamics of tag co-occurrence to explain why these techniques work. We provide an open source implementation of our tagger using these techniques in three popular deep learning frameworks --- TensorFlow, Pytorch, and DyNet.

Citations (3)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.