Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 150 tok/s
Gemini 2.5 Pro 48 tok/s Pro
GPT-5 Medium 35 tok/s Pro
GPT-5 High 27 tok/s Pro
GPT-4o 95 tok/s Pro
Kimi K2 220 tok/s Pro
GPT OSS 120B 433 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

Eco-Driving at Signalized Intersections: A Multiple Signal Optimization Approach (2001.01117v1)

Published 4 Jan 2020 in eess.SY, cs.SY, and eess.SP

Abstract: Consecutive traffic signalized intersections can increase vehicle stops, producing vehicle accelerations on arterial roads and potentially increasing vehicle fuel consumption levels. Eco-driving systems are one method to improve vehicle energy efficiency with the help of vehicle connectivity. In this paper, an eco-driving system is developed that computes a fuel-optimized vehicle trajectory while traversing more than one signalized intersection. The system is designed in a modular and scalable fashion allowing it to be implemented in large networks without significantly increasing the computational complexity. The proposed system utilizes signal phasing and timing (SPaT) data that are communicated to connected vehicles (CVs) together with real-time vehicle dynamics to compute fuel-optimum trajectories. The proposed algorithm is incorporated in the INTEGRATION microscopic traffic assignment and simulation software to conduct a comprehensive sensitivity analysis of various variables, including: system market penetration rates (MPRs), demand levels, phase splits, offsets and traffic signal spacings on the system performance. The analysis shows that at 100\% MPR, fuel consumption can be reduced by as high as 13.8\%. Moreover, higher MPRs and shorter phase lengths result in larger fuel savings. Optimum demand levels and traffic signal spacings exist that maximize the effectiveness of the algorithm. Furthermore, the study demonstrates that the algorithm works less effective when the traffic signal offset is closer to its optimal value. Finally, the study highlights the need for further work to enhance the algorithm to deal with over-saturated traffic conditions.

Citations (61)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.