Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 161 tok/s
Gemini 2.5 Pro 47 tok/s Pro
GPT-5 Medium 25 tok/s Pro
GPT-5 High 38 tok/s Pro
GPT-4o 79 tok/s Pro
Kimi K2 197 tok/s Pro
GPT OSS 120B 441 tok/s Pro
Claude Sonnet 4.5 36 tok/s Pro
2000 character limit reached

Aleatoric and Epistemic Uncertainty with Random Forests (2001.00893v1)

Published 3 Jan 2020 in cs.LG and stat.ML

Abstract: Due to the steadily increasing relevance of machine learning for practical applications, many of which are coming with safety requirements, the notion of uncertainty has received increasing attention in machine learning research in the last couple of years. In particular, the idea of distinguishing between two important types of uncertainty, often refereed to as aleatoric and epistemic, has recently been studied in the setting of supervised learning. In this paper, we propose to quantify these uncertainties with random forests. More specifically, we show how two general approaches for measuring the learner's aleatoric and epistemic uncertainty in a prediction can be instantiated with decision trees and random forests as learning algorithms in a classification setting. In this regard, we also compare random forests with deep neural networks, which have been used for a similar purpose.

Citations (60)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.