Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 100 tok/s
Gemini 2.5 Pro 51 tok/s Pro
GPT-5 Medium 26 tok/s Pro
GPT-5 High 33 tok/s Pro
GPT-4o 103 tok/s Pro
Kimi K2 200 tok/s Pro
GPT OSS 120B 447 tok/s Pro
Claude Sonnet 4 36 tok/s Pro
2000 character limit reached

Upper bounds for stabbing simplices by a line (2001.00782v2)

Published 3 Jan 2020 in cs.CG and math.CO

Abstract: It is known that for every dimension $d\ge 2$ and every $k<d$ there exists a constant $c_{d,k}\>0$ such that for every $n$-point set $X\subset \mathbb Rd$ there exists a $k$-flat that intersects at least $c_{d,k} n{d+1-k} - o(n{d+1-k})$ of the $(d-k)$-dimensional simplices spanned by $X$. However, the optimal values of the constants $c_{d,k}$ are mostly unknown. The case $k=0$ (stabbing by a point) has received a great deal of attention. In this paper we focus on the case $k=1$ (stabbing by a line). Specifically, we try to determine the upper bounds yielded by two point sets, known as the "stretched grid" and the "stretched diagonal". Even though the calculations are independent of $n$, they are still very complicated, so we resort to analytical and numerical software methods. We provide strong evidence that, surprisingly, for $d=4,5,6$ the stretched grid yields better bounds than the stretched diagonal (unlike for all cases $k=0$ and for the case $(d,k)=(3,1)$, in which both point sets yield the same bound). Our experiments indicate that the stretched grid yields $c_{4,1}\leq 0.00457936$, $c_{5,1}\leq 0.000405335$, and $c_{6,1}\leq 0.0000291323$.

Citations (1)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube