Explicit high-order energy-preserving methods for general Hamiltonian partial differential equations (2001.00774v2)
Abstract: A novel class of explicit high-order energy-preserving methods are proposed for general Hamiltonian partial differential equations with non-canonical structure matrix. When the energy is not quadratic, it is firstly done that the original system is reformulated into an equivalent form with a modified quadratic energy conservation law by the energy quadratization approach. Then the resulting system that satisfies the quadratic energy conservation law is discretized in time by combining explicit high-order Runge-Kutta methods with orthogonal projection techniques. The proposed schemes are shown to share the order of explicit Runge-Kutta method and thus can reach the desired high-order accuracy. Moreover, the methods are energy-preserving and explicit because the projection step can be solved explicitly. Numerical results are addressed to demonstrate the remarkable superiority of the proposed schemes in comparison with other structure-preserving methods.
Collections
Sign up for free to add this paper to one or more collections.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.