Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 72 tok/s
Gemini 2.5 Pro 57 tok/s Pro
GPT-5 Medium 43 tok/s Pro
GPT-5 High 23 tok/s Pro
GPT-4o 107 tok/s Pro
Kimi K2 219 tok/s Pro
GPT OSS 120B 465 tok/s Pro
Claude Sonnet 4 39 tok/s Pro
2000 character limit reached

SK-Unet: an Improved U-net Model with Selective Kernel for the Segmentation of Multi-sequence Cardiac MR (2001.00736v1)

Published 3 Jan 2020 in eess.IV

Abstract: In the clinical environment, myocardial infarction (MI) as one com-mon cardiovascular disease is mainly evaluated based on the late gadolinium enhancement (LGE) cardiac magnetic resonance images (CMRIs). The auto-matic segmentations of left ventricle (LV), right ventricle (RV), and left ven-tricular myocardium (LVM) in the LGE CMRIs are desired for the aided diag-nosis in clinic. To accomplish this segmentation task, this paper proposes a modified U-net architecture by combining multi-sequence CMRIs, including the cine, LGE, and T2-weighted CMRIs. The cine and T2-weighted CMRIs are used to assist the segmentation in the LGE CMRIs. In this segmentation net-work, the squeeze-and-excitation residual (SE-Res) and selective kernel (SK) modules are inserted in the down-sampling and up-sampling stages, respective-ly. The SK module makes the obtained feature maps more informative in both spatial and channel-wise space, and attains more precise segmentation result. The utilized dataset is from the MICCAI challenge (MS-CMRSeg 2019), which is acquired from 45 patients including three CMR sequences. The cine and T2-weighted CMRIs acquired from 35 patients and the LGE CMRIs acquired from 5 patients are labeled. Our method achieves the mean dice score of 0.922 (LV), 0.827 (LVM), and 0.874 (RV) in the LGE CMRIs.

Citations (21)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.