Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 30 tok/s
Gemini 2.5 Pro 46 tok/s Pro
GPT-5 Medium 18 tok/s Pro
GPT-5 High 12 tok/s Pro
GPT-4o 91 tok/s Pro
Kimi K2 184 tok/s Pro
GPT OSS 120B 462 tok/s Pro
Claude Sonnet 4 38 tok/s Pro
2000 character limit reached

Compressed Quadratization of Higher Order Binary Optimization Problems (2001.00658v1)

Published 2 Jan 2020 in quant-ph and cs.DM

Abstract: Recent hardware advances in quantum and quantum-inspired annealers promise substantial speedup for solving NP-hard combinatorial optimization problems compared to general-purpose computers. These special-purpose hardware are built for solving hard instances of Quadratic Unconstrained Binary Optimization (QUBO) problems. In terms of number of variables and precision of these hardware are usually resource-constrained and they work either in Ising space {-1,1} or in Boolean space {0,1}. Many naturally occurring problem instances are higher-order in nature. The known method to reduce the degree of a higher-order optimization problem uses Rosenberg's polynomial. The method works in Boolean space by reducing the degree of one term by introducing one extra variable. In this work, we prove that in Ising space the degree reduction of one term requires the introduction of two variables. Our proposed method of degree reduction works directly in Ising space, as opposed to converting an Ising polynomial to Boolean space and applying previously known Rosenberg's polynomial. For sparse higher-order Ising problems, this results in a more compact representation of the resultant QUBO problem, which is crucial for utilizing resource-constrained QUBO solvers.

Citations (27)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.