Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 82 tok/s
Gemini 2.5 Pro 47 tok/s Pro
GPT-5 Medium 14 tok/s Pro
GPT-5 High 16 tok/s Pro
GPT-4o 117 tok/s Pro
Kimi K2 200 tok/s Pro
GPT OSS 120B 469 tok/s Pro
Claude Sonnet 4 36 tok/s Pro
2000 character limit reached

Asymptotically compatible reproducing kernel collocation and meshfree integration for the peridynamic Navier equation (2001.00649v2)

Published 2 Jan 2020 in math.NA and cs.NA

Abstract: In this work, we study the reproducing kernel (RK) collocation method for the peridynamic Navier equation. We first apply a linear RK approximation on both displacements and dilatation, then back-substitute dilatation, and solve the peridynamic Navier equation in a pure displacement form. The RK collocation scheme converges to the nonlocal limit and also to the local limit as nonlocal interactions vanish. The stability is shown by comparing the collocation scheme with the standard Galerkin scheme using Fourier analysis. We then apply the RK collocation to the quasi-discrete peridynamic Navier equation and show its convergence to the correct local limit when the ratio between the nonlocal length scale and the discretization parameter is fixed. The analysis is carried out on a special family of rectilinear Cartesian grids for the RK collocation method with a designated kernel with finite support. We assume the Lam\'{e} parameters satisfy $\lambda \geq \mu$ to avoid adding extra constraints on the nonlocal kernel. Finally, numerical experiments are conducted to validate the theoretical results.

Citations (18)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube