Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
97 tokens/sec
GPT-4o
53 tokens/sec
Gemini 2.5 Pro Pro
44 tokens/sec
o3 Pro
5 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Question Type Classification Methods Comparison (2001.00571v1)

Published 3 Jan 2020 in cs.CL, cs.AI, and cs.LG

Abstract: The paper presents a comparative study of state-of-the-art approaches for question classification task: Logistic Regression, Convolutional Neural Networks (CNN), Long Short-Term Memory Network (LSTM) and Quasi-Recurrent Neural Networks (QRNN). All models use pre-trained GLoVe word embeddings and trained on human-labeled data. The best accuracy is achieved using CNN model with five convolutional layers and various kernel sizes stacked in parallel, followed by one fully connected layer. The model reached 90.7% accuracy on TREC 10 test set. All the model architectures in this paper were developed from scratch on PyTorch, in few cases based on reliable open-source implementation.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (1)
Citations (2)

Summary

We haven't generated a summary for this paper yet.