Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
194 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

A Unified Iteration Space Transformation Framework for Sparse and Dense Tensor Algebra (2001.00532v1)

Published 28 Dec 2019 in cs.MS and cs.PL

Abstract: We address the problem of optimizing mixed sparse and dense tensor algebra in a compiler. We show that standard loop transformations, such as strip-mining, tiling, collapsing, parallelization and vectorization, can be applied to irregular loops over sparse iteration spaces. We also show how these transformations can be applied to the contiguous value arrays of sparse tensor data structures, which we call their position space, to unlock load-balanced tiling and parallelism. We have prototyped these concepts in the open-source TACO system, where they are exposed as a scheduling API similar to the Halide domain-specific language for dense computations. Using this scheduling API, we show how to optimize mixed sparse/dense tensor algebra expressions, how to generate load-balanced code by scheduling sparse tensor algebra in position space, and how to generate sparse tensor algebra GPU code. Our evaluation shows that our transformations let us generate good code that is competitive with many hand-optimized implementations from the literature.

Citations (3)

Summary

We haven't generated a summary for this paper yet.