Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 34 tok/s
Gemini 2.5 Pro 49 tok/s Pro
GPT-5 Medium 27 tok/s Pro
GPT-5 High 30 tok/s Pro
GPT-4o 80 tok/s Pro
Kimi K2 198 tok/s Pro
GPT OSS 120B 461 tok/s Pro
Claude Sonnet 4 38 tok/s Pro
2000 character limit reached

EEG based Continuous Speech Recognition using Transformers (2001.00501v3)

Published 31 Dec 2019 in eess.AS, cs.LG, cs.SD, and stat.ML

Abstract: In this paper we investigate continuous speech recognition using electroencephalography (EEG) features using recently introduced end-to-end transformer based automatic speech recognition (ASR) model. Our results demonstrate that transformer based model demonstrate faster training compared to recurrent neural network (RNN) based sequence-to-sequence EEG models and better performance during inference time for smaller test set vocabulary but as we increase the vocabulary size, the performance of the RNN based models were better than transformer based model on a limited English vocabulary.

Citations (15)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.