Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 138 tok/s
Gemini 2.5 Pro 49 tok/s Pro
GPT-5 Medium 24 tok/s Pro
GPT-5 High 31 tok/s Pro
GPT-4o 92 tok/s Pro
Kimi K2 189 tok/s Pro
GPT OSS 120B 450 tok/s Pro
Claude Sonnet 4.5 34 tok/s Pro
2000 character limit reached

Histogram Layers for Texture Analysis (2001.00215v12)

Published 1 Jan 2020 in cs.LG, cs.CV, and stat.ML

Abstract: An essential aspect of texture analysis is the extraction of features that describe the distribution of values in local, spatial regions. We present a localized histogram layer for artificial neural networks. Instead of computing global histograms as done previously, the proposed histogram layer directly computes the local, spatial distribution of features for texture analysis and parameters for the layer are estimated during backpropagation. We compare our method with state-of-the-art texture encoding methods such as the Deep Encoding Network Pooling, Deep Texture Encoding Network, Fisher Vector convolutional neural network, and Multi-level Texture Encoding and Representation on three material/texture datasets: (1) the Describable Texture Dataset; (2) an extension of the ground terrain in outdoor scenes; (3) and a subset of the Materials in Context dataset. Results indicate that the inclusion of the proposed histogram layer improves performance. The source code for the histogram layer is publicly available: https://github.com/GatorSense/Histogram_Layer.

Citations (44)

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube