Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 165 tok/s
Gemini 2.5 Pro 50 tok/s Pro
GPT-5 Medium 38 tok/s Pro
GPT-5 High 39 tok/s Pro
GPT-4o 111 tok/s Pro
Kimi K2 188 tok/s Pro
GPT OSS 120B 450 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

Near-Optimal Schedules for Simultaneous Multicasts (2001.00072v2)

Published 31 Dec 2019 in cs.DS

Abstract: We study the store-and-forward packet routing problem for simultaneous multicasts, in which multiple packets have to be forwarded along given trees as fast as possible. This is a natural generalization of the seminal work of Leighton, Maggs and Rao, which solved this problem for unicasts, i.e. the case where all trees are paths. They showed the existence of asymptotically optimal $O(C + D)$-length schedules, where the congestion $C$ is the maximum number of packets sent over an edge and the dilation $D$ is the maximum depth of a tree. This improves over the trivial $O(CD)$ length schedules. We prove a lower bound for multicasts, which shows that there do not always exist schedules of non-trivial length, $o(CD)$. On the positive side, we construct $O(C+D+\log2 n)$-length schedules in any $n$-node network. These schedules are near-optimal, since our lower bound shows that this length cannot be improved to $O(C+D) + o(\log n)$.

Citations (7)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.