Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 63 tok/s
Gemini 2.5 Pro 49 tok/s Pro
GPT-5 Medium 14 tok/s Pro
GPT-5 High 19 tok/s Pro
GPT-4o 100 tok/s Pro
Kimi K2 174 tok/s Pro
GPT OSS 120B 472 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

Proximity Search For Maximal Subgraph Enumeration (1912.13446v3)

Published 31 Dec 2019 in cs.DS

Abstract: This paper proposes a new general technique for maximal subgraph enumeration which we call proximity search, whose aim is to design efficient enumeration algorithms for problems that could not be solved by existing frameworks. To support this claim and illustrate the technique we include output-polynomial algorithms for several problems for which output-polynomial algorithms were not known, including the enumeration of Maximal Bipartite Subgraphs, Maximal k-Degenerate Subgraphs (for bounded k), Maximal Induced Chordal Subgraphs, and Maximal Induced Trees. Using known techniques, such as reverse search, the space of all maximal solutions induces an implicit directed graph called "solution graph" or "supergraph", and solutions are enumerated by traversing it; however, nodes in this graph can have exponential out-degree, thus requiring exponential time to be spent on each solution. The novelty of proximity search is a formalization that allows us to define a better solution graph, and a technique, which we call canonical reconstruction, by which we can exploit the properties of given problems to build such graphs. This results in solution graphs whose nodes have significantly smaller (i.e., polynomial) out-degree with respect to existing approaches, but that remain strongly connected, so that all solutions can be enumerated in polynomial delay by a traversal. A drawback of this approach is the space required to keep track of visited solutions, which can be exponential: we further propose a technique to induce a parent-child relationship among solutions and achieve polynomial space when suitable conditions are met.

Citations (9)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.