Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 43 tok/s
Gemini 2.5 Pro 49 tok/s Pro
GPT-5 Medium 17 tok/s Pro
GPT-5 High 19 tok/s Pro
GPT-4o 96 tok/s Pro
Kimi K2 197 tok/s Pro
GPT OSS 120B 455 tok/s Pro
Claude Sonnet 4 36 tok/s Pro
2000 character limit reached

Predictive Coding for Boosting Deep Reinforcement Learning with Sparse Rewards (1912.13414v2)

Published 21 Dec 2019 in cs.LG, cs.AI, and stat.ML

Abstract: While recent progress in deep reinforcement learning has enabled robots to learn complex behaviors, tasks with long horizons and sparse rewards remain an ongoing challenge. In this work, we propose an effective reward shaping method through predictive coding to tackle sparse reward problems. By learning predictive representations offline and using these representations for reward shaping, we gain access to reward signals that understand the structure and dynamics of the environment. In particular, our method achieves better learning by providing reward signals that 1) understand environment dynamics 2) emphasize on features most useful for learning 3) resist noise in learned representations through reward accumulation. We demonstrate the usefulness of this approach in different domains ranging from robotic manipulation to navigation, and we show that reward signals produced through predictive coding are as effective for learning as hand-crafted rewards.

Citations (3)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.