Learning in Discounted-cost and Average-cost Mean-field Games (1912.13309v3)
Abstract: We consider learning approximate Nash equilibria for discrete-time mean-field games with nonlinear stochastic state dynamics subject to both average and discounted costs. To this end, we introduce a mean-field equilibrium (MFE) operator, whose fixed point is a mean-field equilibrium (i.e. equilibrium in the infinite population limit). We first prove that this operator is a contraction, and propose a learning algorithm to compute an approximate mean-field equilibrium by approximating the MFE operator with a random one. Moreover, using the contraction property of the MFE operator, we establish the error analysis of the proposed learning algorithm. We then show that the learned mean-field equilibrium constitutes an approximate Nash equilibrium for finite-agent games.
Collections
Sign up for free to add this paper to one or more collections.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.