Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 37 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 10 tok/s Pro
GPT-5 High 15 tok/s Pro
GPT-4o 84 tok/s Pro
Kimi K2 198 tok/s Pro
GPT OSS 120B 448 tok/s Pro
Claude Sonnet 4 31 tok/s Pro
2000 character limit reached

On structure-preserving discontinuous Galerkin methods for Hamiltonian partial differential equations: Energy conservation and multi-symplecticity (1912.13085v1)

Published 30 Dec 2019 in math.NA and cs.NA

Abstract: In this paper, we present and study discontinuous Galerkin (DG) methods for one-dimensional multi-symplectic Hamiltonian partial differential equations. We particularly focus on semi-discrete schemes with spatial discretization only, and show that the proposed DG methods can simultaneously preserve the multi-symplectic structure and energy conservation with a general class of numerical fluxes, which includes the well-known central and alternating fluxes. Applications to the wave equation, the Benjamin-Bona-Mahony equation, the Camassa-Holm equation, the Korteweg-de Vries equation and the nonlinear Schr\"odinger equation are discussed. Some numerical results are provided to demonstrate the accuracy and long time behavior of the proposed methods. Numerically, we observe that certain choices of numerical fluxes in the discussed class may help achieve better accuracy compared with the commonly used ones including the central fluxes.

Citations (9)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (2)