Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 49 tok/s
Gemini 2.5 Pro 53 tok/s Pro
GPT-5 Medium 19 tok/s Pro
GPT-5 High 16 tok/s Pro
GPT-4o 103 tok/s Pro
Kimi K2 172 tok/s Pro
GPT OSS 120B 472 tok/s Pro
Claude Sonnet 4 39 tok/s Pro
2000 character limit reached

Image retrieval approach based on local texture information derived from predefined patterns and spatial domain information (1912.12978v1)

Published 30 Dec 2019 in cs.CV

Abstract: With the development of Information technology and communication, a large part of the databases is dedicated to images and videos. Thus retrieving images related to a query image from a large database has become an important area of research in computer vision. Until now, there are various methods of image retrieval that try to define image contents by texture, color or shape properties. In this paper, a method is presented for image retrieval based on a combination of local texture information derived from two different texture descriptors. First, the color channels of the input image are separated. The texture information is extracted using two descriptors such as evaluated local binary patterns and predefined pattern units. After extracting the features, the similarity matching is done based on distance criteria. The performance of the proposed method is evaluated in terms of precision and recall on the Simplicity database. The comparative results showed that the proposed approach offers higher precision rate than many known methods.

Citations (21)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.