Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 149 tok/s
Gemini 2.5 Pro 48 tok/s Pro
GPT-5 Medium 35 tok/s Pro
GPT-5 High 35 tok/s Pro
GPT-4o 92 tok/s Pro
Kimi K2 196 tok/s Pro
GPT OSS 120B 425 tok/s Pro
Claude Sonnet 4.5 35 tok/s Pro
2000 character limit reached

Individual specialization in multi-task environments with multiagent reinforcement learners (1912.12671v1)

Published 29 Dec 2019 in cs.AI and cs.MA

Abstract: There is a growing interest in Multi-Agent Reinforcement Learning (MARL) as the first steps towards building general intelligent agents that learn to make low and high-level decisions in non-stationary complex environments in the presence of other agents. Previous results point us towards increased conditions for coordination, efficiency/fairness, and common-pool resource sharing. We further study coordination in multi-task environments where several rewarding tasks can be performed and thus agents don't necessarily need to perform well in all tasks, but under certain conditions may specialize. An observation derived from the study is that epsilon greedy exploration of value-based reinforcement learning methods is not adequate for multi-agent independent learners because the epsilon parameter that controls the probability of selecting a random action synchronizes the agents artificially and forces them to have deterministic policies at the same time. By using policy-based methods with independent entropy regularised exploration updates, we achieved a better and smoother convergence. Another result that needs to be further investigated is that with an increased number of agents specialization tends to be more probable.

Citations (2)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.