Papers
Topics
Authors
Recent
2000 character limit reached

Real-time Policy Distillation in Deep Reinforcement Learning (1912.12630v1)

Published 29 Dec 2019 in cs.LG, cs.AI, and stat.ML

Abstract: Policy distillation in deep reinforcement learning provides an effective way to transfer control policies from a larger network to a smaller untrained network without a significant degradation in performance. However, policy distillation is underexplored in deep reinforcement learning, and existing approaches are computationally inefficient, resulting in a long distillation time. In addition, the effectiveness of the distillation process is still limited to the model capacity. We propose a new distillation mechanism, called real-time policy distillation, in which training the teacher model and distilling the policy to the student model occur simultaneously. Accordingly, the teacher's latest policy is transferred to the student model in real time. This reduces the distillation time to half the original time or even less and also makes it possible for extremely small student models to learn skills at the expert level. We evaluated the proposed algorithm in the Atari 2600 domain. The results show that our approach can achieve full distillation in most games, even with compression ratios up to 1.7%.

Citations (5)

Summary

We haven't generated a summary for this paper yet.

Whiteboard

Paper to Video (Beta)

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.