Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 134 tok/s
Gemini 2.5 Pro 49 tok/s Pro
GPT-5 Medium 28 tok/s Pro
GPT-5 High 24 tok/s Pro
GPT-4o 65 tok/s Pro
Kimi K2 186 tok/s Pro
GPT OSS 120B 439 tok/s Pro
Claude Sonnet 4.5 33 tok/s Pro
2000 character limit reached

Robust Cross-lingual Embeddings from Parallel Sentences (1912.12481v2)

Published 28 Dec 2019 in cs.CL, cs.IR, and cs.LG

Abstract: Recent advances in cross-lingual word embeddings have primarily relied on mapping-based methods, which project pretrained word embeddings from different languages into a shared space through a linear transformation. However, these approaches assume word embedding spaces are isomorphic between different languages, which has been shown not to hold in practice (S{\o}gaard et al., 2018), and fundamentally limits their performance. This motivates investigating joint learning methods which can overcome this impediment, by simultaneously learning embeddings across languages via a cross-lingual term in the training objective. We propose a bilingual extension of the CBOW method which leverages sentence-aligned corpora to obtain robust cross-lingual word and sentence representations. Our approach significantly improves cross-lingual sentence retrieval performance over all other approaches while maintaining parity with the current state-of-the-art methods on word-translation. It also achieves parity with a deep RNN method on a zero-shot cross-lingual document classification task, requiring far fewer computational resources for training and inference. As an additional advantage, our bilingual method leads to a much more pronounced improvement in the the quality of monolingual word vectors compared to other competing methods.

Citations (15)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.