Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 62 tok/s
Gemini 2.5 Pro 48 tok/s Pro
GPT-5 Medium 14 tok/s Pro
GPT-5 High 13 tok/s Pro
GPT-4o 93 tok/s Pro
Kimi K2 213 tok/s Pro
GPT OSS 120B 458 tok/s Pro
Claude Sonnet 4 38 tok/s Pro
2000 character limit reached

Silhouette-Net: 3D Hand Pose Estimation from Silhouettes (1912.12436v1)

Published 28 Dec 2019 in cs.CV

Abstract: 3D hand pose estimation has received a lot of attention for its wide range of applications and has made great progress owing to the development of deep learning. Existing approaches mainly consider different input modalities and settings, such as monocular RGB, multi-view RGB, depth, or point cloud, to provide sufficient cues for resolving variations caused by self occlusion and viewpoint change. In contrast, this work aims to address the less-explored idea of using minimal information to estimate 3D hand poses. We present a new architecture that automatically learns a guidance from implicit depth perception and solves the ambiguity of hand pose through end-to-end training. The experimental results show that 3D hand poses can be accurately estimated from solely {\em hand silhouettes} without using depth maps. Extensive evaluations on the {\em 2017 Hands In the Million Challenge} (HIM2017) benchmark dataset further demonstrate that our method achieves comparable or even better performance than recent depth-based approaches and serves as the state-of-the-art of its own kind on estimating 3D hand poses from silhouettes.

Citations (5)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.