Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 72 tok/s
Gemini 2.5 Pro 57 tok/s Pro
GPT-5 Medium 43 tok/s Pro
GPT-5 High 23 tok/s Pro
GPT-4o 107 tok/s Pro
Kimi K2 219 tok/s Pro
GPT OSS 120B 465 tok/s Pro
Claude Sonnet 4 39 tok/s Pro
2000 character limit reached

Improved Multi-Stage Training of Online Attention-based Encoder-Decoder Models (1912.12384v1)

Published 28 Dec 2019 in eess.AS, cs.LG, cs.SD, eess.SP, and stat.ML

Abstract: In this paper, we propose a refined multi-stage multi-task training strategy to improve the performance of online attention-based encoder-decoder (AED) models. A three-stage training based on three levels of architectural granularity namely, character encoder, byte pair encoding (BPE) based encoder, and attention decoder, is proposed. Also, multi-task learning based on two-levels of linguistic granularity namely, character and BPE, is used. We explore different pre-training strategies for the encoders including transfer learning from a bidirectional encoder. Our encoder-decoder models with online attention show 35% and 10% relative improvement over their baselines for smaller and bigger models, respectively. Our models achieve a word error rate (WER) of 5.04% and 4.48% on the Librispeech test-clean data for the smaller and bigger models respectively after fusion with long short-term memory (LSTM) based external LLM (LM).

Citations (15)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.