Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 43 tok/s
Gemini 2.5 Pro 49 tok/s Pro
GPT-5 Medium 17 tok/s Pro
GPT-5 High 19 tok/s Pro
GPT-4o 96 tok/s Pro
Kimi K2 197 tok/s Pro
GPT OSS 120B 455 tok/s Pro
Claude Sonnet 4 36 tok/s Pro
2000 character limit reached

History-based Anomaly Detector: an Adversarial Approach to Anomaly Detection (1912.11843v2)

Published 26 Dec 2019 in cs.CV

Abstract: Anomaly detection is a difficult problem in many areas and has recently been subject to a lot of attention. Classifying unseen data as anomalous is a challenging matter. Latest proposed methods rely on Generative Adversarial Networks (GANs) to estimate the normal data distribution, and produce an anomaly score prediction for any given data. In this article, we propose a simple yet new adversarial method to tackle this problem, denoted as History-based anomaly detector (HistoryAD). It consists of a self-supervised model, trained to recognize 'normal' samples by comparing them to samples based on the training history of a previously trained GAN. Quantitative and qualitative results are presented evaluating its performance. We also present a comparison to several state-of-the-art methods for anomaly detection showing that our proposal achieves top-tier results on several datasets.

Citations (6)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.