Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 56 tok/s
Gemini 2.5 Pro 39 tok/s Pro
GPT-5 Medium 15 tok/s Pro
GPT-5 High 16 tok/s Pro
GPT-4o 99 tok/s Pro
Kimi K2 155 tok/s Pro
GPT OSS 120B 476 tok/s Pro
Claude Sonnet 4 38 tok/s Pro
2000 character limit reached

Blind Recovery of Spatially Varying Reflectance from a Single Image (1912.11568v1)

Published 25 Dec 2019 in cs.GR and eess.IV

Abstract: We propose a new technique for estimating spatially varying parametric materials from a single image of an object with unknown shape in unknown illumination. Our method uses a low-order parametric reflectance model, and incorporates strong assumptions about lighting and shape. We develop new priors about how materials mix over space, and jointly infer all of these properties from a single image. This produces a decomposition of an image which corresponds, in one sense, to microscopic features (material reflectance) and macroscopic features (weights defining the mixing properties of materials over space). We have built a large dataset of real objects rendered with different material models under different illumination fields for training and ground truth evaluation. Extensive experiments on both our synthetic dataset images as well as real images show that (a) our method recovers parameters with reasonable accuracy; (b) material parameters recovered by our method give accurate predictions of new renderings of the object; and (c) our low-order reflectance model still provides a good fit to many real-world reflectances.

Citations (2)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.