Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 150 tok/s
Gemini 2.5 Pro 50 tok/s Pro
GPT-5 Medium 31 tok/s Pro
GPT-5 High 26 tok/s Pro
GPT-4o 105 tok/s Pro
Kimi K2 185 tok/s Pro
GPT OSS 120B 437 tok/s Pro
Claude Sonnet 4.5 36 tok/s Pro
2000 character limit reached

Compositional Abstraction-based Synthesis for Networks of Stochastic Switched Systems (1912.11481v1)

Published 24 Dec 2019 in eess.SY and cs.SY

Abstract: In this paper, we provide a compositional approach for constructing finite abstractions (a.k.a. finite Markov decision processes (MDPs)) of interconnected discrete-time stochastic switched systems. The proposed framework is based on a notion of stochastic simulation functions, using which one can employ an abstract system as a substitution of the original one in the controller design process with guaranteed error bounds on their output trajectories. To this end, we first provide probabilistic closeness guarantees between the interconnection of stochastic switched subsystems and that of their finite abstractions via stochastic simulation functions. We then leverage sufficient small-gain type conditions to show compositionality results of this work. Afterwards, we show that under standard assumptions ensuring incremental input-to-state stability of switched systems (i.e., existence of common incremental Lyapunov functions, or multiple incremental Lyapunov functions with dwell-time), one can construct finite MDPs for the general setting of nonlinear stochastic switched systems. We also propose an approach to construct finite MDPs for a particular class of nonlinear stochastic switched systems. To demonstrate the effectiveness of our proposed results, we first apply our approaches to a road traffic network in a circular cascade ring composed of 200 cells, and construct compositionally a finite MDP of the network. We employ the constructed finite abstractions as substitutes to compositionally synthesize policies keeping the density of the traffic lower than 20 vehicles per cell. We then apply our proposed techniques to a fully interconnected network of 500 nonlinear subsystems (totally 1000 dimensions), and construct their finite MDPs with guaranteed error bounds. We compare our proposed results with those available in the literature.

Citations (35)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.