Papers
Topics
Authors
Recent
2000 character limit reached

An error bound for Lasso and Group Lasso in high dimensions (1912.11398v2)

Published 21 Dec 2019 in stat.ML, cs.LG, math.ST, and stat.TH

Abstract: We leverage recent advances in high-dimensional statistics to derive new L2 estimation upper bounds for Lasso and Group Lasso in high-dimensions. For Lasso, our bounds scale as $(k*/n) \log(p/k*)$---$n\times p$ is the size of the design matrix and $k*$ the dimension of the ground truth $\boldsymbol{\beta}*$---and match the optimal minimax rate. For Group Lasso, our bounds scale as $(s*/n) \log\left( G / s* \right) + m* / n$---$G$ is the total number of groups and $m*$ the number of coefficients in the $s*$ groups which contain $\boldsymbol{\beta}*$---and improve over existing results. We additionally show that when the signal is strongly group-sparse, Group Lasso is superior to Lasso.

Citations (3)

Summary

We haven't generated a summary for this paper yet.

Whiteboard

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (1)

Collections

Sign up for free to add this paper to one or more collections.