Emergent Mind

Constant index expectation curvature for graphs or Riemannian manifolds

(1912.11315)
Published Dec 24, 2019 in math.CO and cs.DM

Abstract

An integral geometric curvature is defined as the index expectation K(x) = E[i(x)] if a probability measure m is given on vector fields on a Riemannian manifold or on a finite simple graph. Such curvatures are local, satisfy Gauss-Bonnet and are independent of any embedding in an ambient space. While realizing constant Gauss-Bonnet-Chern curvature is not possible in general already for 4-manifolds, we prove that for compact connected manifolds, constant curvature K_m can always be realized with m supported on Morse gradient fields. We give examples of finite simple graphs which do not allow for any constant m-curvature and prove that for one-dimensional connected graphs, there is a convex set of constant curvature configurations with dimension of the first Betti number of the graph. In particular, there is always a unique constant curvature solution for trees.

We're not able to analyze this paper right now due to high demand.

Please check back later (sorry!).

Generate a summary of this paper on our Pro plan:

We ran into a problem analyzing this paper.

Newsletter

Get summaries of trending comp sci papers delivered straight to your inbox:

Unsubscribe anytime.