Action Logic is Undecidable (1912.11273v1)
Abstract: Action logic is the algebraic logic (inequational theory) of residuated Kleene lattices. This logic involves Kleene star, axiomatized by an induction scheme. For a stronger system which uses an $\omega$-rule instead (infinitary action logic) Buszkowski and Palka (2007) have proved $\Pi_10$-completeness (thus, undecidability). Decidability of action logic itself was an open question, raised by D. Kozen in 1994. In this article, we show that it is undecidable, more precisely, $\Sigma_10$-complete. We also prove the same complexity results for all recursively enumerable logics between action logic and infinitary action logic; for fragments of those only one of the two lattice (additive) connectives; for action logic extended with the law of distributivity.
Collections
Sign up for free to add this paper to one or more collections.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.