Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 150 tok/s
Gemini 2.5 Pro 47 tok/s Pro
GPT-5 Medium 33 tok/s Pro
GPT-5 High 34 tok/s Pro
GPT-4o 113 tok/s Pro
Kimi K2 211 tok/s Pro
GPT OSS 120B 444 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

Quadruply Stochastic Gradient Method for Large Scale Nonlinear Semi-Supervised Ordinal Regression AUC Optimization (1912.11193v1)

Published 24 Dec 2019 in cs.LG and stat.ML

Abstract: Semi-supervised ordinal regression (S$2$OR) problems are ubiquitous in real-world applications, where only a few ordered instances are labeled and massive instances remain unlabeled. Recent researches have shown that directly optimizing concordance index or AUC can impose a better ranking on the data than optimizing the traditional error rate in ordinal regression (OR) problems. In this paper, we propose an unbiased objective function for S$2$OR AUC optimization based on ordinal binary decomposition approach. Besides, to handle the large-scale kernelized learning problems, we propose a scalable algorithm called QS$3$ORAO using the doubly stochastic gradients (DSG) framework for functional optimization. Theoretically, we prove that our method can converge to the optimal solution at the rate of $O(1/t)$, where $t$ is the number of iterations for stochastic data sampling. Extensive experimental results on various benchmark and real-world datasets also demonstrate that our method is efficient and effective while retaining similar generalization performance.

Citations (13)

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube