Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 47 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 28 tok/s Pro
GPT-5 High 25 tok/s Pro
GPT-4o 104 tok/s Pro
Kimi K2 156 tok/s Pro
GPT OSS 120B 474 tok/s Pro
Claude Sonnet 4 36 tok/s Pro
2000 character limit reached

Computing the Number of Equivalent Classes on $\mathcal{R}(s,n)/\mathcal{R}(k,n)$ (1912.11189v5)

Published 24 Dec 2019 in cs.IT and math.IT

Abstract: Affine equivalent classes of Boolean functions have many applications in modern cryptography and circuit design. Previous publications have shown that affine equivalence on the entire space of Boolean functions can be computed up to 10 variables, but not on the quotient Boolean function space modulo functions of different degrees. Computing the number of equivalent classes of cosets of Reed-Muller code $\mathcal{R}(1,n)$ is equivalent to classifying Boolean functions modulo linear functions, which can be computed only when $n\leq 7$. Based on the linear representation of the affine group $\mathcal{AGL}(n,2)$ on $\mathcal{R}(s,n)/\mathcal{R}(k,n)$, we obtain a useful counting formula to compute the number of equivalent classes. Instead of computing the conjugate classes and representatives directly in $\mathcal{AGL}(n,2)$, we reduce the computation complexity by introducing an isomorphic permutation group $P_n$ and performing the computation in $P_n$. With the proposed algorithm, the number of equivalent classes of cosets of $R(1,n)$ can be computed up to 10 variables. Furthermore, the number of equivalent classes on $\mathcal{R}(s,n)/\mathcal{R}(k,n)$ can also be computed when $-1\leq k< s\leq n\leq 10$, which is a major improvement and advancement comparing to previous methods.

Citations (1)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.

Authors (2)