Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 37 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 10 tok/s Pro
GPT-5 High 15 tok/s Pro
GPT-4o 84 tok/s Pro
Kimi K2 198 tok/s Pro
GPT OSS 120B 448 tok/s Pro
Claude Sonnet 4 31 tok/s Pro
2000 character limit reached

Unsupervised Domain Adversarial Self-Calibration for Electromyographic-based Gesture Recognition (1912.11037v5)

Published 21 Dec 2019 in cs.HC, cs.LG, and eess.SP

Abstract: Surface electromyography (sEMG) provides an intuitive and non-invasive interface from which to control machines. However, preserving the myoelectric control system's performance over multiple days is challenging, due to the transient nature of the signals obtained with this recording technique. In practice, if the system is to remain usable, a time-consuming and periodic recalibration is necessary. In the case where the sEMG interface is employed every few days, the user might need to do this recalibration before every use. Thus, severely limiting the practicality of such a control method. Consequently, this paper proposes tackling the especially challenging task of unsupervised adaptation of sEMG signals, when multiple days have elapsed between each recording, by introducing Self-Calibrating Asynchronous Domain Adversarial Neural Network (SCADANN). SCADANN is compared with two state-of-the-art self-calibrating algorithms developed specifically for deep learning within the context of EMG-based gesture recognition and three state-of-the-art domain adversarial algorithms. The comparison is made both on an offline and a dynamic dataset (20 participants per dataset), using two different deep network architectures with two different input modalities (temporal-spatial descriptors and spectrograms). Overall, SCADANN is shown to substantially and systematically improves classification performances over no recalibration and obtains the highest average accuracy for all tested cases across all methods.

Citations (43)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.