Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 37 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 10 tok/s Pro
GPT-5 High 15 tok/s Pro
GPT-4o 84 tok/s Pro
Kimi K2 198 tok/s Pro
GPT OSS 120B 448 tok/s Pro
Claude Sonnet 4 31 tok/s Pro
2000 character limit reached

Learning Variable Ordering Heuristics for Solving Constraint Satisfaction Problems (1912.10762v3)

Published 23 Dec 2019 in cs.AI and cs.LG

Abstract: Backtracking search algorithms are often used to solve the Constraint Satisfaction Problem (CSP). The efficiency of backtracking search depends greatly on the variable ordering heuristics. Currently, the most commonly used heuristics are hand-crafted based on expert knowledge. In this paper, we propose a deep reinforcement learning based approach to automatically discover new variable ordering heuristics that are better adapted for a given class of CSP instances. We show that directly optimizing the search cost is hard for bootstrapping, and propose to optimize the expected cost of reaching a leaf node in the search tree. To capture the complex relations among the variables and constraints, we design a representation scheme based on Graph Neural Network that can process CSP instances with different sizes and constraint arities. Experimental results on random CSP instances show that the learned policies outperform classical hand-crafted heuristics in terms of minimizing the search tree size, and can effectively generalize to instances that are larger than those used in training.

Citations (33)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.