Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 60 tok/s
Gemini 2.5 Pro 51 tok/s Pro
GPT-5 Medium 18 tok/s Pro
GPT-5 High 14 tok/s Pro
GPT-4o 77 tok/s Pro
Kimi K2 159 tok/s Pro
GPT OSS 120B 456 tok/s Pro
Claude Sonnet 4 38 tok/s Pro
2000 character limit reached

Hamilton-Jacobi-Bellman Equations for Q-Learning in Continuous Time (1912.10697v2)

Published 23 Dec 2019 in math.OC, cs.LG, cs.SY, and eess.SY

Abstract: In this paper, we introduce Hamilton-Jacobi-BeLLMan (HJB) equations for Q-functions in continuous time optimal control problems with Lipschitz continuous controls. The standard Q-function used in reinforcement learning is shown to be the unique viscosity solution of the HJB equation. A necessary and sufficient condition for optimality is provided using the viscosity solution framework. By using the HJB equation, we develop a Q-learning method for continuous-time dynamical systems. A DQN-like algorithm is also proposed for high-dimensional state and control spaces. The performance of the proposed Q-learning algorithm is demonstrated using 1-, 10- and 20-dimensional dynamical systems.

Citations (16)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (2)