Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 37 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 10 tok/s Pro
GPT-5 High 15 tok/s Pro
GPT-4o 84 tok/s Pro
Kimi K2 198 tok/s Pro
GPT OSS 120B 448 tok/s Pro
Claude Sonnet 4 31 tok/s Pro
2000 character limit reached

Analyzing Structures in the Semantic Vector Space: A Framework for Decomposing Word Embeddings (1912.10434v1)

Published 17 Dec 2019 in cs.CL and cs.LG

Abstract: Word embeddings are rich word representations, which in combination with deep neural networks, lead to large performance gains for many NLP tasks. However, word embeddings are represented by dense, real-valued vectors and they are therefore not directly interpretable. Thus, computational operations based on them are also not well understood. In this paper, we present an approach for analyzing structures in the semantic vector space to get a better understanding of the underlying semantic encoding principles. We present a framework for decomposing word embeddings into smaller meaningful units which we call sub-vectors. The framework opens up a wide range of possibilities analyzing phenomena in vector space semantics, as well as solving concrete NLP problems: We introduce the category completion task and show that a sub-vector based approach is superior to supervised techniques; We present a sub-vector based method for solving the word analogy task, which substantially outperforms different variants of the traditional vector-offset method.

Citations (2)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.