Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 160 tok/s
Gemini 2.5 Pro 49 tok/s Pro
GPT-5 Medium 31 tok/s Pro
GPT-5 High 33 tok/s Pro
GPT-4o 108 tok/s Pro
Kimi K2 184 tok/s Pro
GPT OSS 120B 434 tok/s Pro
Claude Sonnet 4.5 36 tok/s Pro
2000 character limit reached

Analyzing Structures in the Semantic Vector Space: A Framework for Decomposing Word Embeddings (1912.10434v1)

Published 17 Dec 2019 in cs.CL and cs.LG

Abstract: Word embeddings are rich word representations, which in combination with deep neural networks, lead to large performance gains for many NLP tasks. However, word embeddings are represented by dense, real-valued vectors and they are therefore not directly interpretable. Thus, computational operations based on them are also not well understood. In this paper, we present an approach for analyzing structures in the semantic vector space to get a better understanding of the underlying semantic encoding principles. We present a framework for decomposing word embeddings into smaller meaningful units which we call sub-vectors. The framework opens up a wide range of possibilities analyzing phenomena in vector space semantics, as well as solving concrete NLP problems: We introduce the category completion task and show that a sub-vector based approach is superior to supervised techniques; We present a sub-vector based method for solving the word analogy task, which substantially outperforms different variants of the traditional vector-offset method.

Citations (2)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.