Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 64 tok/s
Gemini 2.5 Pro 50 tok/s Pro
GPT-5 Medium 30 tok/s Pro
GPT-5 High 35 tok/s Pro
GPT-4o 77 tok/s Pro
Kimi K2 174 tok/s Pro
GPT OSS 120B 457 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

Adversarial Feature Distribution Alignment for Semi-Supervised Learning (1912.10428v1)

Published 22 Dec 2019 in cs.CV

Abstract: Training deep neural networks with only a few labeled samples can lead to overfitting. This is problematic in semi-supervised learning where only a few labeled samples are available. In this paper, we show that a consequence of overfitting in SSL is feature distribution misalignment between labeled and unlabeled samples. Hence, we propose a new feature distribution alignment method. Our method is particularly effective when using only a small amount of labeled samples. We test our method on CIFAR10 and SVHN. On SVHN we achieve a test error of 3.88% (250 labeled samples) and 3.39% (1000 labeled samples) which is close to the fully supervised model 2.89% (73k labeled samples). In comparison, the current SOTA achieves only 4.29% and 3.74%. Finally, we provide a theoretical insight why feature distribution alignment occurs and show that our method reduces it.

Citations (12)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.